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We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of
the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world, and
random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Second,
we show an analogy between the onset of small-world behavior, quantified by the structural properties of
networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody
parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction
network in budding yeast.
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The network concept has been gaining recognition as a
fundamental tool in understanding dynamical behavior and
response of real systems coming from different fields such as
biology �e.g., food-web, nervous system, cellular metabo-
lism, protein-protein interaction network, gene regulatory
networks�, social systems �e.g., scientific collaboration, cita-
tion�, linguistic networks, and technological systems
�e.g., Internet, power-grid etc.� �For reviews, see, e.g., �1��.

Different models have been proposed to study and under-
stand systems having underlying network structures. Watts
and Strogatz proposed an algorithm to generate what is
popularly known as a “small-world network” �2�, which cap-
tures randomness �characterized by small diameter� and
regularity �measured by clustering� of real-world networks.
This model emphasizes the importance of random connec-
tions in networks. Barabási and Albert proposed a model to
capture degree distributions of real-world networks �3�. Ac-
cording to this model, only a few nodes are responsible for
carrying the whole network. Since then, there has been a
spurt of activities related to the network studies and various
structural properties of these model networks, and real world
networks have been studied to a great extent �1–4�.

Furthermore, there exists extensive literature demonstrat-
ing that the properties of networks are well characterized by
the spectrum of associated adjacency matrices. The adja-
cency matrix �A� of a network is defined in the following
way: Aij =1 if i and j nodes are connected and zero other-
wise. For an undirected network it is symmetric and conse-
quently has real eigenvalues. These eigenvalues give infor-
mation about some basic topological properties of underlying
networks �5�. For example, spectral density of the adjacency
matrix of a random network, whose elements are randomly 0
or 1, also follows the semicircular law �6�. Interestingly, this
result matches with a result in RMT about the spectral den-
sity of a random matrix, whose elements are Gaussian dis-
tributed random numbers, following Wigner’s semicircular
law �7�.

With the increasing availability of large maps of real-

world networks, the analysis of spectral densities of real-
world networks and model networks having real-world prop-
erties have also begun �6,8,9�. These analyses show that the
spectral densities of model networks and real-world net-
works are not semicircular; instead, they have some specific
features depending on the minute details of the networks. For
example, small-world model networks show very complex
spectral densities with many sharp peaks, while spectral den-
sities of scale-free model networks exhibit triangular distri-
bution �6,9�.

In this paper we study networks within the framework of
random matrix theory �RMT�. We show that there exists one
to one correlation between the network diameter which is a
structural property and the eigenvalues fluctuations of the
adjacency matrix which is a spectral property. We present
our RMT analysis for various model networks studied exten-
sively in the recent network literature and also for a real-
world network. We find that in spite of having differences �in
terms of various local and global properties, which are being
used to characterize networks� in these networks, fluctua-
tions of the eigenvalues of adjacency matrices show univer-
sal distribution. So far we are aware of only one relevant
paper where authors have studied eigenvalue fluctuations in
a microarray data for discovering functional gene modules
�10�.

RMT was proposed by Wigner to explain statistical prop-
erties of nuclear spectra �7�. Later this theory was success-
fully applied in the study of spectra of different complex
systems including disordered systems, quantum chaotic sys-
tems, large complex atoms, etc. �11�. More recently, RMT is
applied successfully to analyze time-series data of stock-
market, atmosphere, human EEG, and many more �12�. A
popular practice in RMT is to study eigenvalue fluctuations
via nearest neighbor spacing distribution �NNSD�. NNSD is
the distribution of spacings between consecutive eigenval-
ues. It follows two universal properties depending upon the
underlying correlations among the eigenvalues. For corre-
lated eigenvalues, NNSD follows the Wigner-Dyson formula
of Gaussian orthogonal ensemble �GOE� statistics of RMT,
which is a property shown by real symmetric random matri-
ces with elements being Gaussian distributed random num-
bers. On the other hand, for uncorrelated eigenvalues, NNSD
follows Poisson statistics of RMT, which is a property shown
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by random matrices having nonzero elements only along its
diagonals.

In the present study, we find that the NNSD of random
networks follow GOE. The spectral density of random net-
works and of Gaussian distributed random matrices are both
semicircular, so it was expected that their spacing distribu-
tions would be identical. However, very interestingly, NNSD
of scale-free networks and small-world networks also follow
GOE statistics. In addition to these model networks, we also
analyze a protein-protein interaction network in budding
yeast. We find that this real-world network is scale-free and
its spacing distribution also follows GOE.

Second, we study the change of NNSD with the transition
from regular to small-world networks. The Watts-Strogatz
model of small-world networks is constructed by rewiring
the edges of a regular ring lattice with probability p. This
rewiring procedure generates a network with some random
connections, without altering the number of vertices or
edges. For p=0, structure of the regular lattice or k-nearest
neighbor coupled network remains the same; on the other
hand, for p=1, the regular lattice becomes a random net-
work. For intermediate values of p, the graph is a small-
world network. We find that for the regular lattice �p=0�,
NNSD follows Poisson statistics, for p=1 it follows GOE
statistics, and for 0� p�1 it shows intermediate statistics of
Poisson and GOE. Moreover, we show that the NNSD
changes from Poisson to GOE with a very small increment in
p, and most importantly, transition to GOE takes place ex-
actly at the onset of small-world transition. We establish a
relation between small-world transition and GOE transition
by comparing the diameter and the clustering coefficients of
network with the Brody parameter �. This parameter comes
from semiempirical eigenvalues spacing distributions studied
extensively in RMT to model Poisson to GOE transition.

Here we briefly describe some aspects of RMT which we
use in our network analysis. We denote the eigenvalues of a
network by �i, i=1, . . . ,N, where N is size of the network
and �1��2��3� ¯ ��N. In order to get universal proper-
ties of the fluctuations of eigenvalues, it is customary in

RMT to unfold the eigenvalues by a transformation �̄i

= N̄��i�, where N̄ is the averaged integrated eigenvalue den-

sity �7�. Since we do not have any analytical form for N̄, we
numerically unfold the spectrum by polynomial curve fitting
�for elaborate discussion on unfolding, see Ref. �7��. After
unfolding, average spacings will be unity, independent of the
system. Using the unfolded spectra, we calculate spacings as

si= �̄i+1− �̄i. NNSD is defined as the probability distribution
�P�s�� of these si’s. In the case of Poisson statistics, P�s�
=exp�−s�; whereas for GOE, P�s�= �

2 s exp�− �s2

4
�. For inter-

mediate cases, the spacing distribution is described by Brody
distribution �13�:

P��s� = As� exp�− �s�+1� , �1a�

where

A = �1 + ��� and � = ���� + 2

� + 1
���+1

. �1b�

This is a semiempirical formula characterized by parameter
�. As � goes from 0 to 1, the Brody distribution smoothly

changes from Poisson to GOE. We fit spacing distributions
of different networks by the Brody distribution P��s�. This
fitting gives an estimation of �, and consequently identifies
whether the spacing distribution of a given network is Pois-
son, GOE, or the intermediate of these two.

In Fig. 1, we present the ensemble averaged spectral den-
sity ������ and spacing distribution �P�s�� of random and
scale-free networks. Figures 1�a� and 1�b�, respectively,
show the well-known semicircular and triangular distribution
of spectral densities of random and scale-free networks. Us-
ing RMT techniques described earlier we obtain spacing dis-
tributions for the unfolded eigenvalues. Figures 1�c� and 1�d�
plot these distributions. Now using Eq. �1�, we estimate
Brody parameter as �	1, which clearly shows GOE statis-
tics of spacing distributions for both the networks. Following
RMT, these results imply that even though spectral densities
of scale-free networks are different from random networks,
correlations among the eigenvalues of scale-free networks
are as strong as that of the random networks.

To show that our analysis exhibiting universality of GOE
statistics for model random networks are generic, we studied
some real-world networks also and here we present our re-
sults for a protein-protein interaction network in budding
yeast �14�. Results are presented in Fig. 2, top panel showing
that the degree distribution p�k� of the network follows
power-law, i.e., p�k�	k−
, with 
	2.1536. The middle
panel shows that the spectral density of this network is over-
all triangular �see also the inset of this panel for the magni-
fied figure� but with very large ��0�. A large value of ��0� is
one of the characteristics of many real-world networks �9�.
Due to the large ��0�, it is very difficult to numerically un-
fold the spectra. Therefore, in this case, we divide the spectra
into two parts: one part contains only negative eigenvalues
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FIG. 1. �Color online� �a� and �b� Spectral density ������ of
random �Erdös-Renyi model� and scale-free network �following
Ref. �3��, respectively. �c� and �d� Corresponding spacing distribu-
tion �P�s��. Both follow GOE statistics. The histograms are numeri-
cal results and the solid lines represent fitted Brody distribution. All
networks have N=2000 nodes and an average degree k=20 per
node. Figures are plotted for average over 10 random realizations of
the networks.
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with values less than −0.1 and the other part contains posi-
tive eigenvalues with values greater than 0.1. We assume
these two sets of eigenvalues are an ensemble of two real-
izations, and calculate ensemble averaged spacing distribu-
tion. The bottom panel of Fig. 2 is showing that the spacing
distribution of this protein-protein interaction network fol-
lows GOE. We have also studied spectral rigidity of the ei-
genvalues spectra which show that these networks follow
RMT predictions for sufficiently large scales. Also, this
analysis seems to characterize the level of randomness in
network architecture �15�.

Now we discuss our results for the Watts-Strogatz model
of small-world network. In Figs. 3�a� and 3�e�, we present,
respectively, the spectral density and the spacing distribution
of regular ring lattice with each node having 20 edges. Spac-
ing distributions are obtained again from the same technique.
Figure 3�a� shows that the spectral density of the lattice is
complicated without having any known analytical form; but
its spacing distribution �part �e�� clearly follows Poisson sta-

tistics ��
0�. Then we randomize a fraction p=5�10−5 of
the edges of regular lattice. For this value of p, spectral den-
sity and spacing distribution are plotted respectively in Figs.
3�b� and 3�f�. These figures reveal that, for this very small
value of p, spectral density does not show any noticeable
change as compared to the regular lattice, whereas spacing
distribution shows different property ��
0.08�. As we fur-
ther increase parameter p from 5�10−5 to p=2�10−4 and
thereafter to p=5�10−4, spectral densities show very few
changes in its features �Figs. 3�c� and 3�d��, but very inter-
estingly, according to Figs. 3�g� and 3�h�, spacing distribu-
tions show significantly different properties as compared to
the regular lattice. These are now looking like the interme-
diate of the Poisson and the GOE. By fitting spacing distri-
bution corresponding to these two p values with the Brody
formula �Eq. �1��, we estimate �, respectively, as 0.63 and
0.79. These values indicate that we are already at the onset of
Poisson→GOE transition. Note that we take regular lattice
with average degree k	20 for which NNSD is showing
Poisson statistics. For other values of k, where we may not
have Poisson statistics, we also get transition to GOE statis-
tics. We choose k	20 just to make the transition to GOE
analogy clear. Detailed analysis for other k values are pre-
sented elsewhere �16�.

We present in Fig. 4 a variation of � as a function of p
over the whole range 0� p�1. Here we show correspon-
dence between the Brody parameter and two important net-
work parameters—the characteristic path length L�p� and the
clustering coefficient C�p�—as a function of p. L measures
the number of connections in the shortest path between two
nodes, averaged over all pairs of the nodes. Clustering coef-
ficient C measures the cliquishness of a typical neighbor-
hood, averaged over all nodes. In this figure we have nor-
malized L and C by values L�0� and C�0� for the regular
lattice. Due to this normalization, at p=0, normalized L and
C both are one; whereas for p→1, both network parameters
will be closer to zero. However, � behaves completely op-
posite way at the two extreme values of p. Therefore, in Fig.
4, we compare 1−� with normalized L and C. This figure
shows that the � and the normalized characteristic length
L�p� /L�0� display similar trends and strong correspondence.
The most important result of this study is that the Poisson
→GOE transition and the small-world transition take place
at the same rewiring probability p. Note that all results pre-
sented here are for the adjacency matrices, however we have
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FIG. 2. �Color online� Different properties of a protein-protein
interaction network in budding yeast. �a� Degree distribution: the
scale-free nature of the network is clearly observed. �b� Spectral
density: large value of ��0� Inset: besides large ��0�, overall spec-
tral density follows well-known triangular distribution. �c� Spacing
distribution: follows GOE, estimated value of � is 
1. The histo-
gram represents numerical result and the solid line is the fitted
Brody distribution given by Eq. �1�.
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FIG. 3. �Color online� Transition from ring regular lattice to the small-world network. �a�–�d� show the spectral densities and �e�–�h�
show the corresponding spacing distributions for p=0,5�10−5 ,2�10−4 ,5�10−4, respectively. The histograms are numerical data and the
solid lines are the corresponding fitted Brody distribution �Eq. �1��. See text for the corresponding values of Brody parameters. All the
networks have N=2000 nodes and k=40 average degree per node, and data are average over 10 random realization of the rewiring process.
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done a similar analysis for Laplacian matrices also. For Fig.
3 and Fig. 4, qualitatively the same results are obtained �17�.

In summary, we study eigenvalues spacing distributions
of various model networks and a real-world network. We
show that though the spectral densities of the random, the
scale-free, and the small-world networks are different, their
eigenvalues spacing distributions are the same and follow
GOE statistics. We also show that spacing distribution for a
protein-protein interaction network in budding yeast follows
GOE statistics. Following the interpretation of RMT this uni-
versal GOE statistic implies that the eigenvalues are strongly
correlated among themselves because of some kind of ran-
domness in the corresponding matrix. In network concept
this can be considered as sufficient amount of randomness or
disorder in network connections. Furthermore, we study the

effect of randomness in network architecture on the eigen-
values fluctuations, and use the Brody parameter to quantify
this randomness. We show that there exists one to one cor-
relation between the network diameter, which is a structural
property, and the Brody parameter characterizing a spectral
property. We observe that GOE transition occurs at the onset
of small-world transition. Again, this result implies that at
the onset of small-world transition, there is some kind of
randomness spreading over the whole network leading to the
strong correlations among eigenvalues. The interesting point
here is that a very small amount of random connections is
sufficient to give rise to these correlations.

We point out some of the future prospects of our results.
Universal GOE behavior of network spectra suggests that
statistics of the bulk of eigenvalues of these networks are
consistent with those of a real symmetric random matrix,
with entries being Gaussian distributed random numbers, and
deviation from the GOE behavior could be understood as
system specific part. Random matrix analysis of eigenvectors
had been performed for various different systems �12�, such
as stock-market, atmosphere, and human EEG, to extract
system specific features by separating out universal proper-
ties from the time-series of these systems. In the same spirit,
one can consider eigenvector analysis of adjacency matrices
to understand system specific features in different classes of
networks �16�. The system specific features could be impor-
tant nodes, links or anything; but the most important out-
come of the results presented in this paper is that we can
apply RMT, a very well developed branch of physics, to
study networks, providing a framework for complex network
research.
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FIG. 4. �Color online� The shifted Brody parameter 1−� ��� is
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JAYENDRA N. BANDYOPADHYAY AND SARIKA JALAN PHYSICAL REVIEW E 76, 026109 �2007�

026109-4


